Español
PDFs by language
Our 24/7 cancer helpline provides information and answers for people dealing with cancer. We can connect you with trained cancer information specialists who will answer questions about a cancer diagnosis and provide guidance and a compassionate ear.
Chat live online
Select the Live Chat button at the bottom of the page
Call us at 1-800-227-2345
Available any time of day or night
Our highly trained specialists are available 24/7 via phone and on weekdays can assist through online chat. We connect patients, caregivers, and family members with essential services and resources at every step of their cancer journey. Ask us how you can get involved and support the fight against cancer. Some of the topics we can assist with include:
For medical questions, we encourage you to review our information with your doctor.
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Though it accounts for 10% to 15% of all cases of breast cancer, it contributes to 30% of deaths from breast cancer.
Drug treatments (such as chemotherapy, immunotherapy, or targeted therapy) are often called "systemic" treatments because they affect the entire body. Unlike other subtypes of breast cancer, which can be treated with targeted therapies, the most effective treatment options for TNBC typically involve chemotherapy. But many TNBCs don’t respond completely to chemotherapy, or they stop responding to it (becoming “chemoresistant”), and that leaves cancer cells behind that can multiply and spread.
There’s a critical need to develop new ways to treat TNBC more effectively. To do this, researchers must find new aspects of the tumor cells to target.
American Cancer Society (ACS) grantee Ozgur Sahin, PhD, and his research lab team recently published a paper about their investigation of how to make TNBCs more responsive to chemotherapy treatments.
The researchers are focusing on a protein in the lysyl oxidase (LOX) family. These are proteins that some breast cancer tumor cells make high levels of to help keep the cancer cells alive even when oxygen levels are low (hypoxia).
My lab studies LOX, a well-known protein “remodeler” of the extracellular matrix. We found that blocking this protein seems to improve the effectiveness of chemotherapy against triple-negative breast cancer, making LOX a highly attractive therapeutic target for a new drug. The extracellular matrix acts as a scaffolding around cells, giving them a supportive barrier. It’s a highly dynamic structure that’s constantly remodeled by cell and chemical changes. Normal cells make small amounts of this matrix, but tumor cells make large quantities of it, giving them a stronger barrier against anticancer drugs."
Ozgur Sahin, PhD
University of South Carolina
American Cancer Society Research Grantee
Past research has well-established that LOX proteins help make tumors more aggressive by enhancing their ability to spread (metastasize). Research from Sahin and his team adds to the building evidence that higher levels of LOX proteins also make the tumors more resistant to chemotherapy.
LOX proteins create a matrix of fibers that surround the tumor and strengthen its barrier. This “extracellular matrix” can prevent drugs from reaching the tumor, while LOX and other proteins “turn down the volume” on messages that tell the cell when it’s time to die. Together, these actions help cancer cells live, grow, and spread (metastasize), moving from the where they started to distant parts of the body.
Normal cells make small amounts of this matrix, but tumor cells make large quantities of it, giving them a stronger barrier against anticancer drugs."
Studying human TNBC cells in lab dishes and in mice, Sahin and his team discovered that blocking the LOX protein helps stop this type of breast cancer’s growth and improves its response to chemotherapy by allowing anticancer drugs to:
Sahin’s team found that more than half of the people they studied with chemoresistant TNBC make high levels of LOX; and therefore, are expected to respond to LOX-targeting therapies used in combination with chemotherapy.
This finding and other results from Sahin’s research provide strong pre-clinical rationale for clinical trials in humans that develop and test new drugs to help overcome chemoresistance in people being treated for TNBC. In fact, his team is working to develop these new drugs now. These new therapeutics could include LOX-inhibitor drugs as well as drugs that would target and inhibit related communication pathways within the extracellular matrix.
If this was helpful, donate to help fund patient support services, research, and cancer content updates.